Computational Aspects of the Combinatorial Nullstellensatz Method

نویسنده

  • Edinah K. Gnang
چکیده

We discuss here some computational aspects of the Combinatorial Nullstellensatz argument. Our main result shows that the order of magnitude of the symmetry group associated with permutations of the variables in algebraic constraints, determines the performance of algorithms naturally deduced from Alon’s Combinatorial Nullstellensatz arguments. Finally we present a primal-dual polynomial constructions for certifying the existence or the non-existence of solutions to combinatorial problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Nullstellensatz Modulo Prime Powers and the Parity Argument

We present new generalizations of Olson’s theorem and of a consequence of Alon’s Combinatorial Nullstellensatz. These enable us to extend some of their combinatorial applications with conditions modulo primes to conditions modulo prime powers. We analyze computational search problems corresponding to these kinds of combinatorial questions and we prove that the problem of finding degreeconstrain...

متن کامل

Combinatorial Nullstellensatz

The Combinatorial Nullstellensatz is a theorem about the roots of a polynomial. It is related to Hilbert’s Nullstellensatz. Established in 1996 by Alon et al. [4] and generalized in 1999 by Alon [2], the Combinatorial Nullstellensatz is a powerful tool that allows the use of polynomials to solve problems in number theory and graph theory. This article introduces the Combinatorial Nullstellensat...

متن کامل

A Generalization of Combinatorial Nullstellensatz

In this note we give an extended version of Combinatorial Nullstellensatz, with weaker assumption on nonvanishing monomial. We also present an application of our result in a situation where the original theorem does not seem to work.

متن کامل

No feasible monotone interpolation for simple combinatorial reasoning

The feasible monotone interpolation method has been one of the main tools to prove the exponential lower bounds for relatively weak propositional systems. In [1], we introduced a simple combinatorial reasoning system, GCNF+permutation, as a candidate for an automatizable, though powerful, propositional calculus. We show that the monotone interpolation method is not applicable to prove the super...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014